Concept information
Preferred term
expectation–maximization algorithm
Definition
- expectation–maximization algorithm is an iterative method to find (local) maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. (Wikipedia, retrieved on 2021/07/02).
Broader concept
Entry terms
- EM algorithm
Bibliographic citation(s)
- • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1‑38.
In other languages
URI
http://data.loterre.fr/ark:/67375/LTK-B0PJD5PB-4
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}