Concept information
Preferred term
generative adversarial network
Definition
- "framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G." (Goodfellow et al., 2014, p. 1).
Broader concept
Entry terms
- adversarial training
Bibliographic citation(s)
- • Aggarwal, A., Mittal, M., & Battineni, G. (2021). Generative adversarial network : An overview of theory and applications. International Journal of Information Management Data Insights, 1(1), 100004. doi:10.1016/j.jjimei.2020.100004
- • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. Proceedings of the International Conference on Neural Information Processing Systems (NIPS 2014), 2672‑2680.
is implemented by
In other languages
-
French
-
entraînement antagoniste
URI
http://data.loterre.fr/ark:/67375/LTK-LHTJL7BW-5
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}