Skip to main content

ThesoTM thesaurus

Search from vocabulary

Concept information

Preferred term

denoising autoencoder  

Definition

  • "Denoising autoencoders can be viewed either as a regularization option, or as robust autoencoders which can be used for error correction. In these architectures, the input is disrupted by some noise (e.g., additive white Gaussian noise or erasures using Dropout) and the autoencoder is expected to reconstruct the clean version of the input" (Bank et al., 2021).

Broader concept

Entry terms

  • DAE

Bibliographic citation(s)

  • • Bank, D., Koenigstein, N., & Giryes, R. (2021). Autoencoders (arXiv:2003.05991). arXiv. doi:10.48550/arXiv.2003.05991
  • • Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and composing robust features with denoising autoencoders. Proceedings of the 25th International Conference on Machine Learning - ICML ’08, 1096‑1103. doi:10.1145/1390156.1390294

In other languages

URI

http://data.loterre.fr/ark:/67375/LTK-N4NJQ7FF-M

Download this concept: