Concept information
Preferred term
denoising autoencoder
Definition
- "Denoising autoencoders can be viewed either as a regularization option, or as robust autoencoders which can be used for error correction. In these architectures, the input is disrupted by some noise (e.g., additive white Gaussian noise or erasures using Dropout) and the autoencoder is expected to reconstruct the clean version of the input" (Bank et al., 2021).
Broader concept
Entry terms
- DAE
Bibliographic citation(s)
- • Bank, D., Koenigstein, N., & Giryes, R. (2021). Autoencoders (arXiv:2003.05991). arXiv. doi:10.48550/arXiv.2003.05991
- • Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and composing robust features with denoising autoencoders. Proceedings of the 25th International Conference on Machine Learning - ICML ’08, 1096‑1103. doi:10.1145/1390156.1390294
In other languages
-
French
-
DAE
URI
http://data.loterre.fr/ark:/67375/LTK-N4NJQ7FF-M
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}