Concept information
Preferred term
support vector machine
Definition
- Support-vector machines are supervised learning models with associated learning algorithms that analyze data for classification and regression analysis. (Wikipédia, consulté le 07/07/2021).
Broader concept
Entry terms
- support-vector networks
- SVM
Bibliographic citation(s)
- • Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the fifth annual workshop on Computational learning theory, 144‑152. doi:10.1145/130385.130401
- • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273‑297. doi:10.1007/BF00994018
- • Montesinos López, O. A., Montesinos López, A., & Crossa, J. (2022). Support vector machines and support vector regression. In O. A. Montesinos López, A. Montesinos López, & J. Crossa (Eds.), Multivariate Statistical Machine Learning Methods for Genomic Prediction (pp. 337–378). Springer International Publishing. doi:10.1007/978-3-030-89010-0_9
is implemented by
In other languages
-
French
-
séparateurs à vaste marge
-
SVM
URI
http://data.loterre.fr/ark:/67375/LTK-T1JFKRHW-C
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}