Concept information
Terme préférentiel
denoising autoencoder
Définition
- "Denoising autoencoders can be viewed either as a regularization option, or as robust autoencoders which can be used for error correction. In these architectures, the input is disrupted by some noise (e.g., additive white Gaussian noise or erasures using Dropout) and the autoencoder is expected to reconstruct the clean version of the input" (Bank et al., 2021).
Concept générique
Synonyme(s)
- DAE
Référence(s) bibliographique(s)
- • Bank, D., Koenigstein, N., & Giryes, R. (2021). Autoencoders (arXiv:2003.05991). arXiv. doi:10.48550/arXiv.2003.05991
- • Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and composing robust features with denoising autoencoders. Proceedings of the 25th International Conference on Machine Learning - ICML ’08, 1096‑1103. doi:10.1145/1390156.1390294
Traductions
-
français
-
DAE
URI
http://data.loterre.fr/ark:/67375/LTK-N4NJQ7FF-M
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}