Concept information
Terme préférentiel
convolutional neural network
Définition
- a convolutional neural network (ConvNet) is a class of deep neural network, most commonly applied to analyze visual imagery.(Wikipedia, retrieved on 2021/07/02).
Concept générique
Synonyme(s)
- CNN
- ConvNet
Référence(s) bibliographique(s)
- • LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., & Jackel, L. D. (1989.). Handwritten digit recognition with a back-propagation network. Proceedings of the 2nd International Conference on Neural Information Processing Systems (pp. 396-404).
- • LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., & Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation network. In Proceedings Advances in Neural Information Processing Systems, 396‑404.
- • Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278‑2324. doi:10.1109/5.726791
- • Valueva, M. V., Nagornov, N. N., Lyakhov, P. A., Valuev, G. V., & Chervyakov, N. I. (2020). Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Mathematics and Computers in Simulation, 177, 232‑243. doi:10.1016/j.matcom.2020.04.031
est implémenté par
Traductions
-
français
-
CNN
-
ConvNet
-
réseau de neurones à convolution
-
réseau neuronal convolutif
URI
http://data.loterre.fr/ark:/67375/LTK-PZ0FQSKJ-2
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}