Concept information
Preferred term
Liouville equation
Definition
- In differential geometry, Liouville's equation, named after Joseph Liouville, is the nonlinear partial differential equation satisfied by the conformal factor f of a metric f²(dx²+ dy² on a surface of constant Gaussian curvature K : Δ₀log f = − Kf², where ∆₀ is the flat Laplace operator. (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Liouville%27s_equation)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/MDL-CS4ND45J-8
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}