Concept information
Preferred term
Friedmann Lemaître Robertson Walker metric
Definition
- The Friedmann–Lemaître–Robertson–Walker (FLRW) metric is a metric based on the exact solution of Einstein's field equations of general relativity; it describes a homogeneous, isotropic, expanding (or otherwise, contracting) universe that is path-connected, but not necessarily simply connected. The general form of the metric follows from the geometric properties of homogeneity and isotropy; Einstein's field equations are only needed to derive the scale factor of the universe as a function of time. Depending on geographical or historical preferences, the set of the four scientists – Alexander Friedmann, Georges Lemaître, Howard P. Robertson and Arthur Geoffrey Walker – are customarily grouped as Friedmann or Friedmann–Robertson–Walker (FRW) or Robertson–Walker (RW) or Friedmann–Lemaître (FL). This model is sometimes called the Standard Model of modern cosmology, although such a description is also associated with the further developed Lambda-CDM model. The FLRW model was developed independently by the named authors in the 1920s and 1930s. (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker_metric)
Broader concept
Entry terms
- FLRW metric
- Friedmann Lemaître Robertson Walker cosmology
- Friedmann Lemaître Robertson Walker model
- Friedmann Lemaître Robertson Walker space
- Friedmann Lemaître Robertson Walker spacetime
- Friedmann Lemaître Robertson Walker universe
In other languages
-
French
-
cosmologie de Friedmann-Lemaître-Robertson-Walker
-
espace de Friedmann-Lemaître-Robertson-Walker
-
espace-temps de Friedmann-Lemaître-Robertson-Walker
-
métrique FLRW
-
modèle de Friedmann-Lemaître-Robertson-Walker
-
univers de Friedmann-Lemaître-Robertson-Walker
URI
http://data.loterre.fr/ark:/67375/MDL-GVWN352X-0
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}