Concept information
Preferred term
Finsler manifold
Definition
- In mathematics, particularly differential geometry, a Finsler manifold is a differentiable manifold M where a (possibly asymmetric) Minkowski functional F(x, −) is provided on each tangent space TxM, that enables one to define the length of any smooth curve γ. Finsler manifolds are more general than Riemannian manifolds since the tangent norms need not be induced by inner products. (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Finsler_manifold)
Broader concept
In other languages
-
French
-
espace de Finsler
URI
http://data.loterre.fr/ark:/67375/MDL-K3ZMLCG0-N
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}