Concept information
Preferred term
singular value decomposition
Definition
- In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix. It generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any m × n matrix. It is related to the polar decomposition. (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Singular_value_decomposition)
Broader concept
In other languages
URI
http://data.loterre.fr/ark:/67375/MDL-M15R9V06-K
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}