Concept information
Preferred term
Jacobi polynomial
Definition
- In mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials) P_n^(α,β)( x ) are a class of classical orthogonal polynomials. They are orthogonal with respect to the weight ( 1 − x )^α ( 1 + x )^β on the interval [ − 1 , 1 ]. The Gegenbauer polynomials, and thus also the Legendre, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials. (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Jacobi_polynomials)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/MDL-M1TTNWSV-S
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}