Concept information
Preferred term
arithmetic ring
Definition
- In algebra, a commutative ring R is said to be arithmetical (or arithmetic) if any of the following equivalent conditions hold : 1) The localization R_m of R at m is a uniserial ring for every maximal ideal m of R. 2) For all ideals a , b, and c, a ∩ (b+c) = (a ∩ b) + (a ∩ c) 3) For all ideals a , b, and c, a + (b ∩ c) = (a + b) ∩ (a + c) The last two conditions both say that the lattice of all ideals of R is distributive. (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Arithmetical_ring)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/MDL-MFH78FVD-4
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}