Concept information
Preferred term
singular value
Definition
- In mathematics, in particular functional analysis, the singular values, or s-numbers of a compact operator T : X → Y acting between Hilbert spaces X and Y, are the square roots of the (necessarily non-negative) eigenvalues of the self-adjoint operator T^∗T (where T^{*} denotes the adjoint of T). (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Singular_value)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/MDL-PT7S7V1V-S
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}