Concept information
Preferred term
Jordan algebra
Definition
- In abstract algebra, a Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies the following axioms : 1. xy=yx (commutative law) 2. (xy)(xx)=x(y(xx)) (Jordan identity). The product of two elements x and y in a Jordan algebra is also denoted x ∘ y, particularly to avoid confusion with the product of a related associative algebra. (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Jordan_algebra)
Broader concept
Synonym(s)
- Jordanian algebra
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/MDL-QDXGQXT6-W
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}