Concept information
Preferred term
holonomie
Definition
- En mathématiques, et plus précisément en géométrie différentielle, l'holonomie d'une connexion sur une variété différentielle est une mesure de la façon dont le transport parallèle le long de boucles fermées modifie les informations géométriques transportées. Cette modification est une conséquence de la courbure de la connexion (ou plus généralement de sa "forme"). Pour des connexions plates, l'holonomie associée est un type de monodromie, et c'est dans ce cas une notion uniquement globale. Pour des connexions de courbure non nulle, l'holonomie a des aspects locaux et globaux non triviaux. Toute connexion sur une variété donne naissance, grâce aux applications de transport parallèle, à une notion d'holonomie. Parmi les exemples importants, on trouve : l'holonomie de la connexion de Levi-Civita (appelée holonomie riemannienne), les holonomies des connexions des fibrés vectoriels, l'holonomie des connexions de Cartan, et l'holonomie des connexions des fibrés principaux. Dans chacun de ces cas, l'holonomie de la connexion peut s'identifier à un groupe de Lie, le groupe d'holonomie. L'holonomie d'une connexion est étroitement liée à sa courbure, par le théorème d'Ambrose-Singer. (Wikipedia, L'Encylopédie Libre, https://fr.wikipedia.org/wiki/Holonomie)
Broader concept
In other languages
-
English
URI
http://data.loterre.fr/ark:/67375/MDL-T1N9M0T8-7
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}