Concept information
Preferred term
Weierstrass function
Definition
- In mathematics, the Weierstrass function is an example of a real-valued function that is continuous everywhere but differentiable nowhere. It is an example of a fractal curve. It is named after its discoverer Karl Weierstrass. (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Weierstrass_function)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/MDL-T8R14JH0-5
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}