Concept information
Preferred term
bounded operator
Definition
- In functional analysis and operator theory, a bounded linear operator is a linear transformation L : X → Y between topological vector spaces (TVSs) X and Y that maps bounded subsets of X to bounded subsets of Y. If X and Y are normed vector spaces (a special type of TVS), then L is bounded if and only if there exists some M > 0 such that for all x ∈ X, ‖ Lₓ ‖_Y ≤ M ‖ x ‖ₓ . (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Bounded_operator)
Broader concept
Narrower concepts
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/MDL-TLWJ6ZN4-D
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}