Concept information
Preferred term
Bessel function
Definition
- Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation x²y″ + xy′ + (x²- α²y = 0 for an arbitrary complex number α , the order of the Bessel function. Although α and − α produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of α. (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Bessel_function)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/MDL-WB5KZ9CD-Q
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}