Concept information
Preferred term
de Sitter metric
Definition
- In mathematical physics, n-dimensional de Sitter space (often abbreviated to dS_n) is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an n-sphere (with its canonical Riemannian metric). The main application of de Sitter space is its use in general relativity, where it serves as one of the simplest mathematical models of the universe consistent with the observed accelerating expansion of the universe. More specifically, de Sitter space is the maximally symmetric vacuum solution of Einstein's field equations with a positive cosmological constant Λ (corresponding to a positive vacuum energy density and negative pressure). There is cosmological evidence that the universe itself is asymptotically de Sitter, i.e. it will evolve like the de Sitter universe in the far future when dark energy dominates. (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/De_Sitter_space)
Broader concept
Entry terms
- de Sitter cosmology
- de Sitter model
- de Sitter space
- de Sitter spacetime
- de Sitter universe
In other languages
-
French
-
cosmologie de de Sitter
-
espace de de Sitter
-
espace-temps de de Sitter
-
modèle de de Sitter
-
univers de de Sitter
URI
http://data.loterre.fr/ark:/67375/MDL-WBZV18HS-L
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}