Concept information
Preferred term
maximum likelihood
Definition
- In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of statistical inference. (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Maximum_likelihood_estimation)
Broader concept
Entry terms
- maximum likelihood estimation
In other languages
-
French
-
détection du maximum de vraisemblance
-
estimation du maximum de vraisemblance
URI
http://data.loterre.fr/ark:/67375/MDL-WC3D5QCJ-L
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}