Concept information
Término preferido
Mathieu function
Definición
- In mathematics, Mathieu functions, sometimes called angular Mathieu functions, are solutions of Mathieu's differential equation y″ + (a - 2qcos(2x))y = 0 where a and q are parameters. They were first introduced by Émile Léonard Mathieu, who encountered them while studying vibrating elliptical drumheads. They have applications in many fields of the physical sciences, such as optics, quantum mechanics, and general relativity. They tend to occur in problems involving periodic motion, or in the analysis of partial differential equation boundary value problems possessing elliptic symmetry. (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Mathieu_function)
Concepto genérico
Etiquetas alternativas
- Mathieu equation
En otras lenguas
-
francés
-
équation de Mathieu
URI
http://data.loterre.fr/ark:/67375/MDL-LJT7RX21-8
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}