Concept information
Término preferido
Hopf bifurcation
Definición
- In the mathematical theory of bifurcations, a Hopf bifurcation is a critical point where a system's stability switches and a periodic solution arises. More accurately, it is a local bifurcation in which a fixed point of a dynamical system loses stability, as a pair of complex conjugate eigenvalues—of the linearization around the fixed point—crosses the complex plane imaginary axis. Under reasonably generic assumptions about the dynamical system, a small-amplitude limit cycle branches from the fixed point. (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Hopf_bifurcation)
Concepto genérico
Etiquetas alternativas
- Poincaré–Andronov–Hopf bifurcation
En otras lenguas
-
francés
-
bifurcation de Poincaré–Andronov–Hopf
URI
http://data.loterre.fr/ark:/67375/MDL-QDKVK8G8-J
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}