Concept information
Terme préférentiel
opérateur elliptique
Définition
- En mathématiques, un opérateur elliptique est un opérateur différentiel qui généralise l'opérateur laplacien. Les opérateurs elliptiques sont définis via la condition que les coefficients devant les termes de dérivation de plus haut degré soient positifs, ce qui est équivalent au fait qu'il n'y a pas de caractéristique réelle. Les opérateurs elliptiques jouent un rôle crucial en théorie du potentiel et apparaissent fréquemment en électrostatique et en mécanique des milieux continus. Les solutions stationnaires (c'est-à-dire indépendante du temps) d'équations paraboliques et d'équations hyperboliques sont souvent solutions d'équations elliptiques. (Wikipedia, L'Encylopédie Libre, https://fr.wikipedia.org/wiki/Op%C3%A9rateur_elliptique)
Concept générique
Traductions
-
anglais
-
elliptical operator
URI
http://data.loterre.fr/ark:/67375/MDL-CT1D068L-L
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}