Concept information
Terme préférentiel
équation d'Euler
Définition
- En mécanique des fluides, les équations d'Euler sont des équations aux dérivées partielles non linéaires qui décrivent l'écoulement des fluides (liquide ou gaz) dans l’approximation des milieux continus. Ces écoulements sont adiabatiques, sans échange de quantité de mouvement par viscosité ni d'énergie par conduction thermique. L'histoire de ces équations remonte à Leonhard Euler qui les a établies pour des écoulements incompressibles (1757). La relation avec la thermodynamique est due à Pierre-Simon de Laplace (1816) et l'explication des discontinuités à Bernhard Riemann (1860) dont les travaux ont précédé ceux de Rankine et Hugoniot. (Wikipedia, L'Encylopédie Libre, https://fr.wikipedia.org/wiki/%C3%89quations_d%27Euler)
Concept générique
Traductions
-
anglais
URI
http://data.loterre.fr/ark:/67375/MDL-JXQJXC0H-L
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}