Concept information
Terme préférentiel
groupe de Lie
Définition
- En mathématiques, un groupe de Lie est un groupe qui est aussi une variété différentielle. D'une part, un groupe est une structure algébrique munie d'une opération binaire, typiquement une multiplication et son inverse la division, ou alors une addition et son inverse la soustraction. D'autre part, une variété est un espace qui localement ressemble à un espace euclidien. Ici, on s'intéresse à un ensemble qui est à la fois un groupe et une variété : nous pouvons multiplier les éléments entre eux, calculer l'inverse d'un élément. Si ces opérations de groupe — multiplication et inversion — sont continues, on obtient un groupe continu. Si en plus, ces opérations de groupes sont différentiables, il s'agit d'un groupe de Lie. Les groupes de Lie sont nommés ainsi en l'honneur du mathématicien norvégien Sophus Lie, qui les introduisit afin d'étudier certaines propriétés des équations différentielles. (Wikipedia, L'Encylopédie Libre, https://fr.wikipedia.org/wiki/Groupe_de_Lie)
Concept générique
Concepts spécifiques
Traductions
-
anglais
URI
http://data.loterre.fr/ark:/67375/MDL-K338ZCGV-C
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}