Concept information
Terme préférentiel
Finsler manifold
Définition
- In mathematics, particularly differential geometry, a Finsler manifold is a differentiable manifold M where a (possibly asymmetric) Minkowski functional F(x, −) is provided on each tangent space TxM, that enables one to define the length of any smooth curve γ. Finsler manifolds are more general than Riemannian manifolds since the tangent norms need not be induced by inner products. (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Finsler_manifold)
Concept générique
Traductions
-
français
-
espace de Finsler
URI
http://data.loterre.fr/ark:/67375/MDL-K3ZMLCG0-N
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}