Concept information
Terme préférentiel
Hartley transform
Définition
- In mathematics, the Hartley transform (HT) is an integral transform closely related to the Fourier transform (FT), but which transforms real-valued functions to real-valued functions. It was proposed as an alternative to the Fourier transform by Ralph V. L. Hartley in 1942, and is one of many known Fourier-related transforms. Compared to the Fourier transform, the Hartley transform has the advantages of transforming real functions to real functions (as opposed to requiring complex numbers) and of being its own inverse. (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Hartley_transform)
Concept générique
Synonyme(s)
- Hartley transformation
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/MDL-KM87VSZ5-S
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}