Concept information
Terme préférentiel
équation de Navier-Stokes
Définition
- En mécanique des fluides, les équations de Navier-Stokes sont des équations aux dérivées partielles non linéaires qui décrivent le mouvement des fluides newtoniens (donc des gaz et de la majeure partie des liquides). La résolution de ces équations modélisant un fluide comme un milieu continu à une seule phase est difficile, et l'existence mathématique de solutions des équations de Navier-Stokes n'est pas démontrée. Mais elles permettent souvent, par une résolution approchée, de proposer une modélisation de nombreux phénomènes, comme les courants océaniques et des mouvements des masses d'air de l'atmosphère pour les météorologistes, le comportement des gratte-ciel ou des ponts sous l'action du vent pour les architectes et les ingénieurs, ou encore celui des avions, des trains ou des voitures à grande vitesse pour leurs bureaux d'études concepteurs, ainsi que l'écoulement de l'eau dans un tuyau et de nombreux autres phénomènes d'écoulement de divers fluides. (Wikipedia, L'Encylopédie Libre, https://fr.wikipedia.org/wiki/%C3%89quations_de_Navier-Stokes)
Concept générique
Traductions
-
anglais
URI
http://data.loterre.fr/ark:/67375/MDL-S8647C84-R
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}