Concept information
Terme préférentiel
principal component analysis
Définition
- Principal component analysis (PCA) is a multivariate analysis technique whose goal is to reduce the dimensionality of a large number of interrelated variables. It belongs to the class of projection methods and achieves its objective by calculating one or more linear combinations of the original set of maximum variance. [Source: Encyclopedia of Measurement and Statistics; Principal Component Analysis]
Concept générique
Appartient au groupe
URI
http://data.loterre.fr/ark:/67375/N9J-WCFK2FX0-N
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}