Concept information
Preferred term
probabilistic topic model
Definition
- "A generative probabilistic model that uses Bayesian inference to abstract the mental “topics” used to compose a set of documents." (Jones et al., 2015, p. 251).
Broader concept
Entry terms
- topic model
- topic modeling
Belongs to group
Bibliographic citation(s)
-
• Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84. https://doi.org/10.1145/2133806.2133826
[Study type: literature review / Access: closed]
-
• Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences, 101(suppl 1), 5228‑5235. https://doi.org/10.1073/pnas.0307752101
[Study type: empirical study / Access: open]
-
• Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in semantic representation. Psychological Review, 114(2), 211‑244. https://doi.org/10.1037/0033-295X.114.2.211
[Study type: empirical study / Access: closed]
-
• Jones, M. N., Willits, J. A., & Dennis, S. (2015). Models of semantic memory. In J. R. Busemeyer, Z. Wang, J. T. Townsend, & A. Eidels (Eds.), The Oxford handbook of computational and mathematical psychology (p. 232‑254). Oxford University Press.
[Study type: literature review / Access: closed]
-
• Kumar, A. A. (2020). Semantic memory : A review of methods, models, and current challenges. Psychonomic Bulletin & Review. https://doi.org/10.3758/s13423-020-01792-x
[Study type: literature review / Access: open]
Creator
- Frank Arnould
Model of
In other languages
-
French
-
modèle thématique
URI
http://data.loterre.fr/ark:/67375/P66-Z32BVG4N-3
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}