Concept information
Terme préférentiel
word2vec
Définition
- Algorithme pour le plongement de mots utilisant un réseau de neurones avec une couche cachée. La technique CBOW (continuous-bag-of-words) permet de prédire un mot en fonction de son contexte. La technique skip-gram permet de prédire le contexte d'un mot.
Concept générique
Appartient au groupe
Référence(s) bibliographique(s)
-
• Iordan, M. C., Giallanza, T., Ellis, C. T., Beckage, N. M., & Cohen, J. D. (2022). Context matters : Recovering human semantic structure from machine learning analysis of large-scale text corpora. Cognitive Science, 46(2), e13085. https://doi.org/10.1111/cogs.13085
[Type d'étude : étude empirique / Accès : ouvert]
-
• Kumar, A. A. (2021). Semantic memory : A review of methods, models, and current challenges. Psychonomic Bulletin & Review, 28(1), 40‑80. https://doi.org/10.3758/s13423-020-01792-x
[Type d'étude : revue de la littérature / Accès : ouvert]
-
• Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. ArXiv:1301.3781 [Cs]. http://arxiv.org/abs/1301.3781
[Type d'étude : description de logiciel / Accès : ouvert]
Créateur
- Frank Arnould
Traductions
-
anglais
URI
http://data.loterre.fr/ark:/67375/P66-MGX3FNFD-5
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}