Concept information
Preferred term
Mautner's lemma
Definition
-
Mautner's lemma in representation theory, named after Austrian-American mathematician Friederich Mautner, states that if G is a topological group and π a unitary representation of G on a Hilbert space H, then for any x in G, which has conjugates
- yxy−1
converging to the identity element e, for a net of elements y, then any vector v of H invariant under all the π(y) is also invariant under π(x).
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Mautner%27s_lemma)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-C1KNCBVP-9
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}