Concept information
Preferred term
characteristic function
Definition
-
In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if A is a subset of some set X, then if and otherwise, where is a common notation for the indicator function. Other common notations are and
The indicator function of A is the Iverson bracket of the property of belonging to A; that is,
For example, the Dirichlet function is the indicator function of the rational numbers as a subset of the real numbers.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Indicator_function)
Broader concept
Narrower concepts
Entry terms
- indicator function
In other languages
-
French
-
fonction indicatrice
URI
http://data.loterre.fr/ark:/67375/PSR-DMTN3C45-S
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}