Concept information
Preferred term
strictly convex space
Definition
-
In mathematics, a strictly convex space is a normed vector space (X, || ||) for which the closed unit ball is a strictly convex set. Put another way, a strictly convex space is one for which, given any two distinct points x and y on the unit sphere ∂B (i.e. the boundary of the unit ball B of X), the segment joining x and y meets ∂B only at x and y. Strict convexity is somewhere between an inner product space (all inner product spaces being strictly convex) and a general normed space in terms of structure. It also guarantees the uniqueness of a best approximation to an element in X (strictly convex) out of a convex subspace Y, provided that such an approximation exists.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Strictly_convex_space)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-FVS4X8RN-2
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}