Concept information
Preferred term
Dirichlet function
Definition
-
In mathematics, the Dirichlet function is the indicator function of the set of rational numbers , i.e. if x is a rational number and if x is not a rational number (i.e. is an irrational number).
It is named after the mathematician Peter Gustav Lejeune Dirichlet. It is an example of pathological function which provides counterexamples to many situations.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Dirichlet_function)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-GJ7QW40K-0
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}