Concept information
Preferred term
concrete category
Definition
-
In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets (or sometimes to another category, see Relative concreteness below). This functor makes it possible to think of the objects of the category as sets with additional structure, and of its morphisms as structure-preserving functions. Many important categories have obvious interpretations as concrete categories, for example the category of topological spaces and the category of groups, and trivially also the category of sets itself. On the other hand, the homotopy category of topological spaces is not concretizable, i.e. it does not admit a faithful functor to the category of sets.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Concrete_category)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-GL1SM8QV-S
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}