Concept information
Preferred term
arithmetic ring
Definition
-
In algebra, a commutative ring R is said to be arithmetical (or arithmetic) if any of the following equivalent conditions hold:
- The localization of R at is a uniserial ring for every maximal ideal of R.
- For all ideals , and ,
- For all ideals , and ,
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Arithmetical_ring)
Broader concept
Entry terms
- arithmetical ring
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-GTBC87Q1-Q
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}