Concept information
Preferred term
Riemann surface
Definition
-
In mathematics, particularly in complex analysis, a Riemann surface is a one-dimensional complex manifold.
Loosely speaking, this means that any Riemann surface is formed by gluing together open subsets of the complex plane C using holomorphic gluing maps.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Riemann_surface)
Broader concept
Narrower concepts
- abelian integral
- Abel-Jacobi map
- Bolza surface
- Bring's curve
- dessin d'enfant
- fundamental polygon
- Gauss-Bonnet formula
- Hurwitz surface
- Klein quartic
- modular curve
- planar Riemann surface
- Poincaré metric
- Prym differential
- Riemann-Hurwitz formula
- Riemann-Roch theorem
- Riemann sphere
- smooth completion
- Teichmüller space
- theta function
- Thomae's formula
- uniformization theorem
- Weierstrass point
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-HT4QK75C-T
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}