Concept information
Preferred term
algebraic combinatorics
Definition
-
Algebraic combinatorics is an area of mathematics that employs methods of abstract algebra, notably group theory and representation theory, in various combinatorial contexts and, conversely, applies combinatorial techniques to problems in algebra.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Algebraic_combinatorics)
Broader concept
Narrower concepts
- associahedron
- Cayley graph
- Coxeter group
- cycle graph
- Dyson conjecture
- Gröbner basis
- Hessenberg variety
- HNN extension
- Kazhdan-Lusztig polynomial
- Kostka number
- Kronecker coefficient
- Kruskal-Katona theorem
- Littlewood-Richardson rule
- LLT polynomial
- Macdonald polynomial
- quasisymmetric function
- ring of symmetric functions
- Robinson-Schensted correspondence
- Robinson-Schensted-Knuth correspondence
- Schubert polynomial
- Stanley symmetric function
- Tamari lattice
- Young's lattice
- Young tableau
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-JJRPZSZ2-M
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}