Concept information
Preferred term
probability distribution
Definition
-
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space).
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Probability_distribution)
Broader concept
Narrower concepts
- arcsine distribution
- Bates distribution
- Benford's law
- Bernoulli distribution
- beta-binomial distribution
- beta distribution
- beta negative binomial distribution
- beta rectangular distribution
- binomial distribution
- Borel distribution
- Cauchy distribution
- continuous uniform distribution
- Conway-Maxwell-Poisson distribution
- Cunningham function
- Delaporte distribution
- discrete uniform distribution
- extended negative binomial distribution
- Gauss-Kuzmin distribution
- geometric distribution
- hyperbolic secant distribution
- hypergeometric distribution
- Irwin-Hall distribution
- joint probability distribution
- Kumaraswamy distribution
- logarithmic distribution
- logit-normal distribution
- negative binomial distribution
- noncentral beta distribution
- normal distribution
- Owen's T function
- parabolic fractal distribution
- Pearson distribution
- Poisson binomial distribution
- Poisson distribution
- Rademacher distribution
- raised cosine distribution
- shape parameter
- Skellam distribution
- triangular distribution
- U-quadratic distribution
- Wigner semicircle distribution
- Yule-Simon distribution
- zeta distribution
- Zipf's law
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-K9FXDR6F-N
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}