Concept information
Preferred term
quaternion algebra
Definition
-
In mathematics, a quaternion algebra over a field F is a central simple algebra A over F that has dimension 4 over F. Every quaternion algebra becomes a matrix algebra by extending scalars (equivalently, tensoring with a field extension), i.e. for a suitable field extension K of F, is isomorphic to the 2 × 2 matrix algebra over K.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Quaternion_algebra)
Broader concept
Narrower concepts
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-LN6C6VRX-1
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}