Concept information
Preferred term
Goss zeta function
Definition
-
In the field of mathematics, the Goss zeta function, named after David Goss, is an analogue of the Riemann zeta function for function fields. Sheats (1998) proved that it satisfies an analogue of the Riemann hypothesis. Kapranov (1995) proved results for a higher-dimensional generalization of the Goss zeta function.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Goss_zeta_function)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-LPFZMH0V-8
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}