Concept information
Preferred term
real-valued function
Definition
-
In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain. Real-valued functions of a real variable (commonly called real functions) and real-valued functions of several real variables are the main object of study of calculus and, more generally, real analysis. In particular, many function spaces consist of real-valued functions.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Real-valued_function)
Broader concept
Narrower concepts
- algebraic function
- analytic function
- Cantor function
- concave function
- convex function
- Conway base 13 function
- critical point
- differentiable function
- Dirichlet function
- effective domain
- extremum
- function of several real variables
- Lagrange theorem
- limit of a function
- monotonic function
- norm
- piecewise function
- scalar field
- Taylor's theorem
- Thomae's function
- Volterra's function
- Weierstrass function
In other languages
-
French
-
fonction réelle d'une variable réelle
URI
http://data.loterre.fr/ark:/67375/PSR-MDFZ99KQ-Q
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}