Concept information
Preferred term
Chabauty topology
Definition
-
In mathematics, the Chabauty topology is a certain topological structure introduced in 1950 by Claude Chabauty, on the set of all closed subgroups of a locally compact group G. The intuitive idea may be seen in the case of the set of all lattices in a Euclidean space E. There these are only certain of the closed subgroups: others can be found by in a sense taking limiting cases or degenerating a certain sequence of lattices. One can find linear subspaces or discrete groups that are lattices in a subspace, depending on how one takes a limit. This phenomenon suggests that the set of all closed subgroups carries a useful topology.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Chabauty_topology)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-MNBB39V7-J
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}