Concept information
Preferred term
Dirichlet kernel
Definition
-
In mathematical analysis, the Dirichlet kernel, named after the German mathematician Peter Gustav Lejeune Dirichlet, is the collection of periodic functions defined as where n is any nonnegative integer. The kernel functions are periodic with period .
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Dirichlet_kernel)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-NCVL12F1-8
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}