Concept information
Preferred term
Riemann zeta function
Definition
-
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as for , and its analytic continuation elsewhere.
The Riemann zeta function plays a pivotal role in analytic number theory, and has applications in physics, probability theory, and applied statistics.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Riemann_zeta_function)
Broader concept
Narrower concepts
Entry terms
- Euler-Riemann zeta function
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-P36V4MHV-V
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}