Concept information
Preferred term
Ehresmann's lemma
Definition
-
In mathematics, or specifically, in differential topology, Ehresmann's lemma or Ehresmann's fibration theorem states that if a smooth mapping , where and are smooth manifolds, is
- a surjective submersion, and
- a proper map (in particular, this condition is always satisfied if M is compact),
then it is a locally trivial fibration. This is a foundational result in differential topology due to Charles Ehresmann, and has many variants.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Ehresmann%27s_lemma)
Broader concept
In other languages
-
French
-
théorème de fibration d'Ehresmann
URI
http://data.loterre.fr/ark:/67375/PSR-PGBQRNQ4-L
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}