Concept information
Preferred term
extreme value theorem
Definition
-
In calculus, the extreme value theorem states that if a real-valued function is continuous on the closed interval , then must attain a maximum and a minimum, each at least once. That is, there exist numbers and in such that:
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Extreme_value_theorem)
Broader concept
In other languages
-
French
-
théorème de Weierstrass
-
théorème des bornes
-
théorème des bornes atteintes
URI
http://data.loterre.fr/ark:/67375/PSR-S3DNT3VV-M
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}