Concept information
Preferred term
Shimizu L-function
Definition
-
In mathematics, the Shimizu L-function, introduced by Hideo Shimizu (1963), is a Dirichlet series associated to a totally real algebraic number field. Michael Francis Atiyah, H. Donnelly, and I. M. Singer (1983) defined the signature defect of the boundary of a manifold as the eta invariant, the value as s=0 of their eta function, and used this to show that Hirzebruch's signature defect of a cusp of a Hilbert modular surface can be expressed in terms of the value at s=0 or 1 of a Shimizu L-function.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Shimizu_L-function)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-S4NFGC68-V
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}