Concept information
Preferred term
Volterra's function
Definition
-
In mathematics, Volterra's function, named for Vito Volterra, is a real-valued function V defined on the real line R with the following curious combination of properties :
- V is differentiable everywhere
- The derivative V ′ is bounded everywhere
- The derivative is not Riemann-integrable.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Volterra%27s_function)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-SDGW8W30-1
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}